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Abstract — We propose a new and simple on-line process identification method for the automatic tuning of the
PID controller. It does not require a special type of test signal generators such as relay or P controller only if the
signals are persistently exciting. That is, a user can choose arbitrary signal generators such as relay, a P controller,
the controller itself, pulse signal and step signal generator because it needs only the measured process output and
the controller output. It can incorporate nonlinearities due to actuator saturation or manual mode operation during
identification work and shows a good robustness to measurement noises, nonlinearity of the process and disturbances.
The proposed autotuner combined with the identification method and tuning rule using a model reduction shows good
control properties compared with previous autotuning methods.
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INTRODUCTION

Even though many advanced control strategies have been
developed in last decade, the PID controller has most con-
tributed to solving major control problems in industry. It has
been recognized as the simplest and much robust controller.
Moreover, it is very familiar to the field operator.

Howeuver, it is not easy to tune the parameters of the PID
controller when the process has relatively large time delay
compared with the time constant or it is high order. The tun-
ing of the PID controller using the continuous cycling, the
process reaction curve or trial and error method involve tedi-
ous procedure or stability problem. The continuous cycling
method uses the Ziegler-Nichols (ZN) tuning method so that
frequently the tuning performance can be poor for an under-
damped process, integrating process or very large time delay
process. Moreover, it needs repetitive procedure and it is not
recommendable for a dangerous or sensitive process because
it puts the process on the border of the stability. In the pro-
cess reaction curve method, it is difficult to determine the in-
flection point and the magnitude of the step input. Also, be-
cause it is an open-loop step test, it is difficult to identify the
operating frequency region of the controller. To overcome these
drawbacks, many simple on-line closed-loop identification meth-
ods have been proposed to tune PID controllers automatically
and efficiently.

Astrém and Higglund [1984] identified ultimate process in-
formation from a relay feedback test to tune the PID controller
automatically. Here, the relay is used as a test signal generator
to activate the process. It guarantees a stable closed loop re-
sponse for the open loop stable process and is commercially
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available. Li et al. [1991] obtained parametric models from two
relay feedback tests. Lee and Sung [1993] obtained the first
order plus time delay model from a relay feedback test com-
bined with a proportional (P) controller. Their method provides
the exact model for a first order plus time delay process. Sung
et al. [1995] proposed a modified relay feedback method to
obtain more accurate ultimate data than that of Astrém and
Higglund's method [1984] by reducing high order harmonic
terms. Sung et al. [1996] proposed a new identification method
using the second order plus time delay model to approximate
the process more accurately and a simple tuning rule for the
second order plus time delay model. Shen and Yu [1994] and
Loh et al. [1993] extended these automatic tuning concepts to
the multi-input and multi-output (MIMO) case using the sequen-
tial loop closing concept. Lee et al. [1993] proposed an on-line
identification method using Astrom and Higglund's [1984] con-
cept to control the pH processes. Above-mentioned autotuning
methods using the relay are very simple and efficient. However,
the identified information is only one point on the Nyquist piot
(usually, ultimate information) so frequently, a good control per-
formance can't be guaranteed.

Yuwana and Seborg [1982] proposed a P control method to
obtain the first order plus time delay model using few transient
data points. It used the Proportional (P) controller to activate
the process. It was improved by Jutan and Rodrigez [1984], Lee
[1989], Chen [1989] and Sung et al. [1994], Lee et al. [1990]
suggested a P control method to identify the process using the
second order plus time delay model. To estimate the parameters
of the PID controller, a frequency domain tuning method based
on the methods of Edgar et al. [1981] and Harris and Melli-
champ [1985] is applied, yielding a good controller setting. Sung
and Lee [1995] applied Yuwana and Seborg's [1982] autotun-
ing concept to obtain the titration curve of the pH process au-
tomatically. In this method, the proportional gain of the P con-
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troller (test signal generator) should be tuned to guarantee an
underdamped closed loop response. This is a critical disad-
vantage in the implementation.

All the previous methods should use a special test signal
generator such as P controller or relay. Therefore, the PID con-
troller can't control the process continuously moreover, it is
not easy to determine the magnitude of the relay feedback
and the initial proportional gain of the P controller. The iden-
tified models of previous methods show poor robustness to
measurement noises because the methods utilize only several
dominant data points.

We propose a new identification method to automatically
tune the PID controller. The proposed identification method
does not require a special test signal generator such as P con-
troller or relay. That is, a user can utilize arbitrary test signal
generator such as the PID controller itself, relay, P controller,
pulse signal or step signal generator because only the con-
troller output and the measured process output are required
to identify the process. Also, the proposed identification method
can incorporate nonlinearities resulted from actuator satura-
tion or manual mode operation during the identification work.
Additionally, the method can provide the model needed to de-
sign other type-controllers such as the Dynamic Matrix Control
(DMC) or Model Algorithmic Control (MAC) since we can
easily estimate the finite impuise/step response model from the
identified continuous model.

PROPOSED ON-LINE PROCESS
IDENTIFICATION METHOD

Many system identification literatures usually treat discrete-
time domain approaches such as the auto-regressive integrated
moving average model with exogeneous input (ARIMAX model)
identified by linear estimators such as the recursive least squares
method, prediction error method, instrumental variable meth-
od etc. The discrete-time model can represent the deterministic
and stochastic processes efficiently and then it can be used for
predictive control strategies such as the Generalized Predictive
Control (GPC), Generalized Minimum Variance (GMV) Con-
troller. However, a continuous-time model is required to tune
the PID controller. Moreover, the model should be a low order
plus time delay model to estimate the parameters of the PID
controller using usual tuning rules. We would introduce a new
identification and model reduction method to tune the PID
controller automatically.

Consider the following Laplace transform.

y6)= Iy exp-st o M
us) = Iy expi-styu(d @
60)= 23 ©)

where, y(s), u(s) and G(s) denote Laplace transforms of the pro-
cess output, controller output and transfer function, respective-
ly. The underlying identification concept is very simple. (1)
and (2) are estimated by numerical integral technique for sev-
eral positive real s values and the corresponding G(s)'s are
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calculated from (3) and finally, G(s)'s are used to determine the
adjustable parameters of a specified model using the least
squares method.

(1) and (2) can be calculated by (4) and (5) numencally
These numerical integration formula are derived by assuming
the process output and input are constant from t to t+At. Other
integration formula can be also used like the rectangular, Simp-
son and trapezoidal method.

z=¢... exp(—s; t)—exp(—s;(t+ At))

y&)= 2 5 y® @
u(s,) = r=a- exp(—s t)— exp(—s (t+At) u) )
G(s,-)=lyl—g% ©
i=1,2,---,ns @)
$1= U/ T <8,<83 " <8, = VT (8)

where, n,, and At denote the number of s; and sampling time,
respectively and s; are located with equal interval. (8) represents
the recommended upper and lower boundary values of s,

In (1) and (2), the Laplace transform of a signal (y(s,) or
u(s;)) means the integral of the signal (y(t) or u(t)) weighted by
a weight function exp(—s;t)=exp(—t/z). Therefore, roughly
speaking, we can say that the signals below 1, are mainly con-
sidered to estimate the process model. It is notable that G(s;)
is exactly the same as the numerical value of the process trans-
fer function if the integration is exact. We will fit the adjust-
able parameters of the model using the calculated G(s;) in
the s domain.

We recommend the sampling time as small as possible to
guarantee a continuous-time system and an acceptable accuracy
in calculating the integrals of (1) and (2). From many simu-
lation studies, we recognize that if the ratio of the time con-
stant to the sampling time is larger than 20, then an acceptable
accuracy can be guaranteed.

If the process is activated by the PID controller, we recom-
mend Tus, Tme values as the time delay and the time constant
of the closed loop response. Here, the time delay term can be
inferred by measuring the time corresponding to a specified
small deviation of the process output from initial value. Also,
dominant time constant can be determined by the time of the
process output corresponding to 63 % of the set point or steady
state. On the other hand, if the process is activated by the relay,
Twia a0 7, values can be chosen as the time delay and the half-
period of the closed loop response. But, it is notable that vari-
OUS T, and 1, values different from the above recommended
specifications result in almost same model.

It should be noted that the integral from zero to infinite
can not be obtained until exp(—st)y(t) and exp(— s;t)u(t) almost
g0 to zero. We recommend the following equation as the cri-
terion to end the integral.

exp(~syt,,4) < 0.0001 )

Here, if we choose 1,4, as a very large value, the identifica-
tion time t,,, would be very long to satisfy (9). On the other
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hand, too much information of the signal (the signal informa-
tion after t,;) would be lost if we choose 7. (equivalently,
tma) as a very small value.

To obtain a continuous model from the calculated G(s)'s,
the following model can be used to model the open loop stable
process.

n,s™ +n,_ s" 1 +———+n;s+n,

Gn(s)=
® dns” +d,_;s" 1 +———+d;s+1

(10)

Then, an off-line (batch) least squares method minimizing the
following objective function can be used to obtain the coef-
ficients of (10) from the calculated G(s)'s.

| (0 G684 8, GG -t + ===+ 4GS,
d,n

1)
D8 =D, 8 ————— n;8; — 1o+ G(s,)}?

where, d and n denote vectors composed of the coefficients of
denominator and numerator, respectively. Again, it is notable
that the proposed identification method of (11) is just a curve
fitting to approximate the numerical value of the process trans-
fer function in terms of various real s values if the integration
of (4) and (5) is sufficiently accurate.

To prevent singularity in the least squares method, at least,
ns should be larger than n+m. On the other hand, the accuracy
and robustness would be enhanced as ns increases, but the com-
puting load is also heavier. We recommend ns>6(n+m) with
equal interval between s/s on the basis of the experiences in
the use of the least squares method. The proposed identifica-
tion method is more complicate than previous autotuning
methods. However, it needs not any complicated numerical tech-
niques and it can be implemented by using present available
computing power without any problem.

In summary, from the controller output and the measured
process output data, (4), (5) and (6) can be calculated and then
we can estimate the coefficients of (10) using the least squares
method satisfying (11). Next, the model (10) can be reduced
to the second order plus time delay or the first order plus
time delay model to tune the PID controller using usual tun-
ing methods such as Internal Model Control (IMC), the In-
tegral of the Time weighted Absolute value of the Emror (ITAE),
Cohen-coon methods.

Here, it should be noted that the proposed identification
method can be applied to the open loop stable process being
initially in a steady state. Therefore, processes subject to con-
tinuing disturbances or unexpected perturbations can't be in-
corporated by the proposed identification method.

1. Effects of 7,,, and 7, Values and Time Delay

The proposed identification strategy is to minimize the er-
ror in the Laplace domain between the process transfer func-
tion and the model of (10). That is, if the numerical integral
is accurate, the proposed method is simply to approximate the
process transfer function by adjusting the model parameters of
(10) using the numerical values of the process transfer func-
tion corresponding to several real positive s values.

The method to approximaté the process in the Laplace do-
main is not a new concept. For a long time, we have been used
the same concept to approximate the time delay term using the

Taylor's series or Padé approximation and to reduce the high
order model using continued fraction expansion and trunca-
tion [Chen and Shieh, 1968; Chen and Shieh, 1970; Chen et
al., 1971} and for simplification via moments [Gibilaro and
Lees, 1969; Papadourakis et al., 1989]. The proposed method
simply extends the concept to the identification problem. Rough-
ly speaking, only difference between the above-explained meth-
ods and the proposed method is the choice of the range of s
values. For example, the Talyor's series approximate the pro-
cess transfer function around s=0. On the other hand, the pro-
posed method approximate the part of the process correspond-
ing to the range 1/%,,<S <1/

To analyze the effects of the parameters 1, and z,,, con-
sider the following transfer function

exp(—6s

Gp(s)= % (12)
The proposed identification method is equivalent to estimate
the model transfer function of (10) by minimizing the follow-
ing criterion of (13) using the least square method of (11) if
the numerical integration is sufficiently accurate. Here, G(s;)
is just the numerical value of the process (12) for a positive s=
s; value.

M]ﬁ {Gp(5:) -G, &)} 3)

i) We estimated the model of (10) corresponding to the pro-
cess of (12) for £,.=0.5, =50, £.»,=50.0 with 7,,=6, 6=0.1,
n=5 and m=4 to inspect the effects of various 1, values. Bode
plots of the process and the estimated models for various 7,
values are shown in Fig. 1. The estimated models show good
accuracy and are almost same for the various 7, values. From
the results, we recognize that the estimated model are not al-
most affected by the chosen 7, value only if n and m are

1

Model wath 1, = 0.5
- = - Model with 1, = 5.0
2 24 weouee Model with 1, = 50.0
—— Process

-150

-200
0.00

@ 3 ase T 2 3 asg T 2 3 45
0.1 1
w
Fig. 1. Bode plots of the process and the models for various
Tma Values.
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Fig. 2. Bode plots of the process and the model for various
time delays.

chosen as sufficiently large values. However, if 7, value is less
than about 2 times %, the estimated model frequently shows
a poor performance. AS .. and %, are closed, the independ-
ency of the data sets G(s;)'s decreases so the sensitivity to struc-
tural plant/model mismatches would increase and many infor-
mations would be lost. Therefore, we recommend the following

T = time delay
Tmax = max(6 times 7,,;,, time constant or rise time)

ii) We inspected the effects of 7, values by estimating the
model of (10) corresponding to the process of (12) with n=5,
m=4, 6=0.1, 7,,=5.0 and varioust 7, values. The same as the
Tmax Case, Bode plots of the process and the models are near-
ly accorded. From the results and additionally extensive simu-
lations, we can recognize that the proposed method provides
a good model and shows an acceptable robustness for various
Tun and ,,, values.

iii) To inspect the effects of the time delay, we estimated the
model parameters for 6=1.0, 6=2.0, 6=5.0 with 7,.,=6 and 7,
=20 as shown in Fig. 2. The proposed method provides
very good models for the various time delay. From the results,
we can recognize that the model of (10) with n=5 and m=4
can incorporate the large time delay process.

2. Identification Results for the Process Order and Position
of Poles and Zeroes

i) Consider the following fifth order plus time delay process
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Fig. 3. Bode plots of the process and the model for the high
order process.

_ exp(—0.5s)

Gp(s)= "—(;‘1')5— (14)
and Bode plots of the estimated model in Fig, 3. Here, we used
Tnin=0.5, =5, n=5 and m=4. The method provides almost
the same frequency data as those of the fifth order plus time
delay process. Additionally, we simulated many fifth order plus
time delay processes whose poles are differently located in the
left-half plane. From the resuits, we conclude that the model
of (10) with n=5 and m=4 can treat the high order plus time
delay process.

ii) Consider the following second order plus time delay model

Go(s) = exp(—0.1s) (15)

s2+25+1

and Bode plots of the process and the estimated model for &
=0.3 and &=3.0 with 7,,=0.1, ,,=5, n=5 and m=4 are shown
in Fig. 4. Both the underdamped and the overdamped process
can be efficiently treated by the proposed method.

iii) Consider the following nonminimum phase zero and
time delay process

_ exp(-=0.1s)(1—-3.0s)

)= s2+2s+1 (16)
and the estimated process model in Fig. 5. We can recognize
that the proposed identification strategy still provides a good
model for the nonminimum phase zero on the basis of the
results and additional several examples of multiple nonmin-
imum and minimum phase zeroes processes.

In summary, we can recognize from many numerical ex-
amples that the proposed method may well approximate vari-
ous types of the process such as high order, underdamped and
overdamed, large time delay, minimum phase zero and nonmin-
imum phase zero processes.
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Fig. 4. Bode plots of the process and the model for the under-
damped process and the overdamped process.
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Fig. 5. Bode plots of the process and the model for the non-
minimum phase zero process.

MODEL REDUCTION AND
ON-LINE TUNING METHOD

Usually, tuning relations for the tuning of the PID controller
such as Cohen-Coon, Integral of the Time-weighted Absolute
value of the Error (ITAE), Internal Model Control (IMC) are
based on the first order plus time delay or second order plus
time delay model. Even though the Zeigler-Nichols (ZN) tun-
ing rule can be applied to a high order plus time delay model,
it frequently shows poor performances especially for the large
time delay and underdamped process. Therefore, if the given
model is a high order plus time delay model, it should be

reduced to low order plus time delay model to tune the PID
controller more efficiently. Here, the model G,(s) is a high
order plus time delay model so that it should be reduced.
From (10), we can obtain the reduced second order plus time
delay model easily using the following equations. Assume the
reduced second order plus time delay model is as follows

= Knexp(=6ps)
Gr-n®)= 28%+21,E,5+1 an

Then the static gain of the reduced model is obtained by (18)
k. =G, (0) ' (18)
and &, and 7, are estimated to satisfy (19)
K, eXp(—j6,, @)
1-2&+i2t,é, 0

= Kn (19)
V(1-2 Y +{21,&, 0

|G = |G, ()| =

By using an off-line (batch) least squares method, &, and 7,
satisfying (19) as much as possible can be directly estimated
from (20} and (21) [Levy, 1959]

2 1Gn@) |’ + (47,87 -272) 0| G ()|
:ki_leG@)lz (20)
O<ap<@ < ———<@ <———<o, 21)

and additionally the following phase lag equation for the second
order plus time delay model is used to estimate the time delay
of the reduced model.

p, _ +arcan 2(—2125,“% 1- 705) 22

Here, subscript r-m and m denote ‘reduced-model’ and ‘model,
respectively. a, represents the ultimate frequency of the pro-
ceess model G,(s) and s are located with equal interval be-
tween 0 and ., Here, @, can be calculated by finding the
root of Im(G,(jw))=0. We consider the frequency below @, in
(20) and (22) because the controller may work in this frequency
region. (20) is the same approach as the Levy's [1959] method.
Though the improved methods [Sanathanan and Koerner, 1963;
Payne, 1970; Whitfield, 1986] can be used, we use the Levy's
[1959] method for simplicity. (22) can be easily derived from
the phase lag equation of the second order plus time delay pro-
cess.

The same procedure can be done to obtain the reduced first
order plus time delay model. Therefore, if we want to use some
kinds of tuning rules based on the first order plus time delay
model such as ITAE, IMC, Cohen-Coon tuning methods, we
should reduce (10) to the first order plus time delay model.
On the other hand, if we want to use the second order plus
time delay model and the corresponding tuning rule such as
Sung et al's [1996] tuning method, we can use (17), (20) and
(22). Sung et al.'s [1996] tuning rule is shown in Table 1.

Here, it should be emphasized that the first order plus time
delay model can't well approximate an underdamped process
or a high order process whose poles are concentrated on one

Korean J. Chem. Eng.(Vol. 16, No. 1)
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point. In this case, the second order plus time delay model
is strongly recommended in the viewpoint of accuracy. Here,

Table 1. PID tuning rule for the second order plus time delay
model

Set point chang:

—0.983
k, k. =—0.04+10.333+0.949 (:—MJ £, &, <09

—0.832
Knk, =—0.544+0.308(6—"']+1.408(9—"') &, En>09

2 T
5 lo0ss+00m2[ B |le On oy
T 3 T

m

5 11768+0320[ O g Gm 54
Tn T

6, -1.09
1, | o | osseress (‘;’—mJ
T, TP T osm0 ”

Disturbance rejection :

9 -2.001 P -0.766
k., k. =—0.67+0.297 [—”‘) +2.189 (Z”‘J §" R

m

% 09
T
9 2 9 -0.766
K,k =—0365+0260{ = +14) +2180( % | &
T T
8 509
fm
0.520
S po12[ 8 ) _g3 04
T 3 T
T P 2
5 —0975+0910( B —1.845
T T

&n
0.15+0.33 [fm—J
T

+1{1—exp|-—

6,

2l g
525-088[ % _28]| !,
T

2204
T

6 0530
In —_19+1576|
Td Tn

S

1—-exp|— o\
-0.15+0.939 (—m)
T

P -1.171
1.45+0.969 =
T

Sung et al.'s [1996] tuning rule can be applied to 0.0<6,/7,<
2.0. Therefore, even though the proposed identification method
can identify a very large time delay process as shown in the
previous section, the proposed autotuning method can be ap-
plied to the process within 0.0<6,/7,<2.0. However, the pro-
cess including the time delay larger than the dominant time
constant is very rare.

If predictive control strategies such as DMC or MAC are
used, the step response or impulse response can be estimat-
ed from (10). The proposed method uses the least squares
technique considering all measured data sets and it is well-
known fact that it provides unbiased estimation results for white
measurement noises and good smoothing performance for vari-
ous measurement noises and high frequency disturbances. Con-
trarily, in the open loop step test, the step response or impulse
response for the predictive control strategy is obtained by meas-
uring directly without any smoothing. Therefore, it is obvious
that the proposed method is more robust to measurement noises
and high frequency disturbances than the open loop step test.
Also, the step test requires a long identification time because
it can be over at the steady state, but the proposed method can
be complete within shorter time because it is not necessary to
wait the steady state. Moreover, it can confine the process out-
put within a desired region more easily.

SIMULATION STUDY

To show the performances of the proposed identification
method for the PID controller autotuning, consider the follow-
ing examples.

(i) Third order plus time delay process controlled by the ideal
PID controller without measurement noise

exp(-0.25)
(s+1)°

Table 2 shows the ideal PID controller gains during the iden-
tification work and the identified models (G,..(s)). Bode plots
of the process G(s), the model G,(s) and the reduced model
G...(s) are shown in Fig. 6. Fig. 7 compares the control per-
formance of the proposed method using Sung et al.'s {1996]
tuning method with that of the continuous cycling method
with Zeigler-Nichols tuning rule. From the simulation results,
we recognize that the proposed method provides good model
parameters.

(i) process (i) corrupted with an uniformly distributed meas-
urement random noise between — 0.3 and 0.3.

Here, the set point-to-noise ratio is 1:0.6. This is very large

6@ = @3)

Table 2. Obtained model and reduced model

Reduced model for process (i):

G, (s)=__CXP(=0.5%4s)
r-n(®) 2.199%%+2 610s+1

Tpin =025, T,,. =20, n=5, m=4

PID controller during identiﬁcation_ work for process (i) and (ii):
G.(s)=1.0 (1+—1-+1.5s)
7s

January, 1999
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Fig. 6. Bode plots of the reduced model, the model and the
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Fig. 7. Control resuits of the proposed autotuned PID con-
troller.

value compared with that of practical control problems. The pro-
cess and the ideal PID controller responses during the iden-
tification work are shown in Fig. 8 and Table 2. Here, the
sampling time of the PID controller is chosen by 0.2 to pre-
vent infinite control action. In Fig. 8, the fast fluctuation of
the control action is due to the derivative term of the PID con-
troller. Previous methods using several dominant data points
without a smoothing function can't be applied to identify the
process because of severe measurement noises. Nevertheless,

0.0 T T T T T T T
0 20 40 60 80 100 120 140
ID—|
8 —
6 —

PID

-4 -

T I I T T I 1
0 20 40 60 80 100 120 140

time

Fig. 8. Responses of the ideal PID controller and the process
during the identification work when the measured out-
put is corrupted by random noise.
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Fig. 9. Bode plots of the process and the model when the meas-
ured output is corrupted by random noise.

the identified model by the proposed method shows a good
accuracy as shown in Fig. 9. We guess that the robustness to
measurement noises is due to the integral action such as (4)
and (5) and the least squares estimation.

iii) Consider the following 3 identical tank series [Rough,
1987]

— =-2vh;+2u 24)

Korean J. Chem. Eng.(Vol. 16, No. 1)
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dh2

=~ 2vhy+2vhy (25)
o =~ 2B+ 2\h, (26)

Here, the level of the third tank (process output) is controlled
by adjusting the influent flowrate (controller output). This pro-
cess shows a nonlinearity for the different operating region.
Through the linearization at the reference value h,,, the follow-
ing linearized process can be obtained.

Vi BB by 424 () @7

ooy SbeD) o,y @

Wy S D) )+ ) 29)
__ o

Gp(s)= ( \/}ES +1)3 (30)

We use the anti-derivative kick PID controller with the step
set point change from 50 to 51 to activate the process and
Fig. 10 shows Bode plots of the estimated model and the linear-
ized process at the reference value 50. Here, we used 7,,,=1.0,
Tne=06, n=5 and m=3. The proposed identification method
provides a good model for the narrow operating region in the
nonlinear system.

Fig. 11 shows Bode plots of the linearized process and the
identified model when the static input disturbance correspond-
ing to the process output of the magnitude 0.15 (15 % of the
set point change) is entered at the starting point. The propos-
ed method provides an acceptable model even though the dis-
turbance is entered during the identification work. In many
simulation studies, we can recognize that it provides an ac-

o - Model
J —— Linearized Process

g 2
1
o
o
o
2 3 aser | : 3 aser | : 3
0.001 0.0 0.1
0=
-50 =4
= -100+4
-150
-200 ey T
2 ] “« 567 2 3 4 SE7T 2 3
0.001 0.01 0.1

Fig. 10. Bode plots of the model and the linearized process.
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Fig. 11. Bode plots of the model and the linearized process when
disturbance enters during the identification work.

ceptable robustness to static disturbances or sinusoidal dis-
turbances. Here, it should be noted that as the magnitude of
the activation increases, the robustness to disturbances and
noises can be enhanced, on the other hand the effects of the
nonlinearity of the process can increase and a large deviation
of the process output would be undesirable.

Fig. 12 shows the activated process output by the anti-deri-
vative kick PID controller with a wide step set point change

1105

100~

90 -
B0~

70—

Process output

60

50 T T T T !

304
25-1
20 4
154
104

Controller output

0 20 40 60 80 100
Time
Fig. 12. Responses of the anti-derivative kick PID controller
and the process during the identification work for the
tank series process with the set point change from 50
to 100.
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Fig. 13. Bode plots of the model and the linearized process.
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Fig. 14. Control results of the proposed autotuned PID con-
troller.

from 50 to 100 to introduce a large nonlinearity and Fig. 13
shows Bode plots of the linearized processes at the reference
value 50 and 100 and the identified model. Here, we used 7,
=1.0, 7,.,=5.0, n=5 and m=4. Since the identified model exists
between the linearized model at h,;=50 and that of h,;=100,
we can infer that the identified model by the proposed iden-
tification is acceptable for the nonlinear system including wide
operating region.

As shown in Fig. 14, the proposed autotuned PID controller
based on the second order plus time delay model shows a good
control performance for the step set point change from 50 to

62 -

60

58 4

56

54

Process output

52

50 T T T T 1
] 20 40 60 80 100

204

Controller output
o
1

o I I T I 1
0 20 40 60 80 100

Time
Fig. 15. Responses of the anti-derivative kick PID controller
and the process during the identification work for the
tank series process with the valve saturation.

100. Here, the proposed autotuned PID controller is tuned bas-
ed on the Sung et al. [1996]'s tuning method and the identifi-
ed model from the test signal and the process output in Fig. 10.

Fig. 15 shows the activated process output by the anti-deri-
vative PID controller with the set point change from 50 to
60. It should be noted that the controller output are confined
within u,,,=15.0 and u,,=5.0. That is, the valve saturation pro-
duces the nonlinearity so that many previous on-line closed-
loop identification methods such as relay feedback methods
or P controller methods may be fail because they uses struc-
tural information. However, the proposed method can incor-
porate the nonlinearities resulted from the valve saturation
or the manual mode operation during the identification work
because it requires only process input and process output data
sets rather than structural information. As shown in Fig. 16,
the identification performance does not affected by the non-
linearities of the valve saturation.

Based on the many simulation examples, we can conclude
that the proposed identification method may incorporate the
nonlinear process, actuator saturation or manual mode opera-
tion, measurement noise and the small disturbance during the
identification work.

EXPERIMENT STUDY

We applied the proposed method to control the level of tanks.
As shown in Fig. 17, the process output and input are the level
of the lowest tank and the control signal to manipulate the value,
respectively. We used the AD/DA oconverter using RS232C serial
communication to acquire the process data from DP cell and send
the control signal to the valve. The obtained model is as follows.

4.63exp(—(263.21sec)s) (31)

G, (s)=
© (224.04sec)’s? +2 x (224.04sec)x1.45s + 1
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Fig. 16. Bode piots of the model and the linearized process.
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Fig.17. Tank process for the experimental test of the propos-
ed method.

Experimental results are shown in Fig. 18. Two step set chan-
ges are done after the autotuning work is over. The control per-
formance of the initial PID controller is bad, however after
the automatic tuning of the PID controller based on the pre-
viously obtained data sets and Sung et al. [1996]'s tuning
method, it shows the good set point tracking performance.
From the results of the experiment, we can recognize that the
proposed method shows a good control performance and can
be applied in industry.
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Fig. 18. Control results of the proposed method in controlling
the level of the pilot-scaled tank.

CONCLUSIONS

We proposed a new on-line identification method for the
automatic tuning of the PID controller to overcome disadvan-
tages of previous identification methods. The proposed meth-
od doesn't require a special test signal generator such as relay
or a P controller that is, can utilize arbitrary test signal generator
such as the controller itself, P controller, relay, pulse signal
or step signal generator. It shows a good model accuracy and
robustness to the measurement noise, the large time delay pro-
cess, the high order process, the mild nonlinear process. The
proposed method needs only the measured process output and
the calculated controller output so it can incorporate the non-
linearities resulted from actuator saturation or manual mode
operation. Because it uses a numerical integral technique, the
sampling time should be small during the identification work.
The proposed autotunner combined with the identification meth-
od and the PID tuning rule using the model reduction method
shows better control performances than previous autotuning
methods. Finally, the proposed identification method can be
applied to obtain the model for other types of controllers such
as DMC or MAC etc.
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NOMENCLATURE

d : vector composed of the coefficients of the denominator
of model transfer function
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G(s) :process transfer function
G,(s) :model transfer function
G,.(s): reduced model transfer function

h :level
h,.s :reference value for linearization
k : static gain of the process
n :vector composed of the coefficients of the numerator of
transfer function
n : the number of s;
s, 8 :variable of Laplace transform
:time

At : sampling time

u(s) :Laplace transform of the controller output
u(t) :controller output

U, :minimum value of the controller output
Uy, :maximum value of the controller output
y(s) :Laplace transform of the process output
y(t) :process output

Greek Letters

0 : time delay

0, givarens: €quivalent time delay

(0] : frequency

@, :ultimate frequency

é : damping factor

T : time constant

Tonins Tmax - time to determine the maximum and minimum s, values

Subscripts

m :model, the number of denominator coefficients of transfer
function

n : the number of numerator coefficients of transfer function

p : process

r-m :reduced model
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